GEOMETRY - SHEET 4 - Isometries, Change of Coordinates.

1. (i) Let

$$
A=\left(\begin{array}{ccc}
1 & a & b \\
c & d & -1 \\
e & \frac{1}{2} & f
\end{array}\right)
$$

Are there constants a, b, c, d, e, f such that A is orthogonal?
(ii) If an orthogonal matrix represents a reflection, show that it is symmetric. Is the converse true?
(iii) Let A be an $n \times n$ matrix for which there exists an orthogonal matrix P such that $P^{T} A P$ is diagonal. Show that A is symmetric.
2. (i) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the map given by

$$
T(\mathbf{x})=A \mathbf{x}+\mathbf{b} \quad \text { where } \quad A=\left(\begin{array}{cc}
1 / 3 & 0 \\
2 / 3 & 1 / \sqrt{2} \\
2 / 3 & -1 / \sqrt{2}
\end{array}\right) \quad \text { and } \quad \mathbf{b}=\left(\begin{array}{c}
1 \\
1 \\
1
\end{array}\right)
$$

Show that $A^{T} A=I_{2}$ and deduce that T is an isometry. What is the image of T ?
(ii) Show that there is no isometry from \mathbb{R}^{3} to \mathbb{R}^{2}.
3. Let $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ be an orthonormal basis in \mathbb{R}^{3} which is right-handed (so that $\mathbf{e}_{1} \wedge \mathbf{e}_{2}=\mathbf{e}_{3}, \mathbf{e}_{2} \wedge \mathbf{e}_{3}=\mathbf{e}_{1}, \mathbf{e}_{3} \wedge \mathbf{e}_{1}=\mathbf{e}_{2}$). Say that

$$
X \mathbf{e}_{1}+Y \mathbf{e}_{2}+Z \mathbf{e}_{3}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k} \quad \text { and } \quad \tilde{X} \mathbf{e}_{1}+\tilde{Y} \mathbf{e}_{2}+\tilde{Z} \mathbf{e}_{3}=\tilde{x} \mathbf{i}+\tilde{y} \mathbf{j}+\tilde{z} \mathbf{k}
$$

Show that

$$
X \tilde{X}+Y \tilde{Y}+Z \tilde{Z}=x \tilde{x}+y \tilde{y}+z \tilde{z}
$$

and

$$
(Y \tilde{Z}-Z \tilde{Y}) \mathbf{e}_{1}+(Z \tilde{X}-X \tilde{Z}) \mathbf{e}_{2}+(X \tilde{Y}-Y \tilde{X}) \mathbf{e}_{3}=(y \tilde{z}-z \tilde{y}) \mathbf{i}+(z \tilde{x}-x \tilde{z}) \mathbf{j}+(x \tilde{y}-y \tilde{x}) \mathbf{k}
$$

What is the significance of these identities?
4. Let \mathbf{u}, \mathbf{v}, and \mathbf{w} be vectors in \mathbb{R}^{3}. What does it mean to say that $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ forms a basis for \mathbb{R}^{3} ?
(i) Suppose a vector $\mathbf{x} \in \mathbb{R}^{3}$ has coordinates $\left(x_{1}, x_{2}, x_{3}\right)$ in the basis $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$. Give a formula for the length of \mathbf{x} in terms of its coordinates and properties of $\mathbf{u}, \mathbf{v}, \mathbf{w}$. What properties of $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are thus required in order for the usual length formula to hold?

Hence or otherwise, determine the equation of the unit sphere in the coordinate system defined by the basis $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$.
(ii) Suppose $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ and $\{\mathbf{U}, \mathbf{V}, \mathbf{W}\}$ are both orthonormal bases in \mathbb{R}^{3}, with coordinates given by $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ and $\mathbf{X}=\left(X_{1}, X_{2}, X_{3}\right)$, respectively. By considering the transformation of coordinates in converting from one basis to the other, show that the equation of the unit sphere is invariant.
5. Let \mathbf{n} be a unit vector in \mathbb{R}^{3}. The stretch S_{k} with invariant plane $\mathbf{r} \cdot \mathbf{n}=c$ and stretch factor k is defined by

$$
S_{k}(\mathbf{v})=\mathbf{v}+(k-1)(\mathbf{v} \cdot \mathbf{n}-c) \mathbf{n}
$$

(i) Describe the maps S_{1}, S_{0} and S_{-1}.
(ii) Determine the matrix for S_{k} when the invariant plane is $x+y+z=0$.
(iii) Find an orthonormal basis $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ of \mathbb{R}^{3} such that $\mathbf{e}_{1}, \mathbf{e}_{2}$ are parallel to the plane in (ii). Describe the map S_{k} in terms of the co-ordinates associated with $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$.
6. (Optional) Consider the system of differential equations

$$
\left(\begin{array}{c}
x_{1}^{\prime \prime}(t) \tag{1}\\
x_{2}^{\prime \prime}(t) \\
x_{3}^{\prime \prime}(t)
\end{array}\right)=\frac{g}{m l}\left(\begin{array}{ccc}
-1 & 1 & 0 \\
1 & -3 & 2 \\
0 & 2 & -5
\end{array}\right)\left(\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right)
$$

Figure 1: The triple pendulum system
which we could abbreviate $\mathbf{x}^{\prime \prime}(t)=\frac{g}{m l} A \mathbf{x}(t)$. These equations provide a simple model of the dynamics of a 'triple pendulum', a system of 3 equal masses m hanging under the force of gravity g and connected by strings of length l (see the figure below). The variables $x_{i}(t)$ denote the horizontal displacement.

Noting that A is symmetric, Spectral Theory gives us that A can be expressed as $A=P D P^{T}$ for an orthogonal matrix P and diagonal matrix

$$
D=\left(\begin{array}{ccc}
-\lambda_{1} & 0 & 0 \\
0 & -\lambda_{2} & 0 \\
0 & 0 & -\lambda_{3}
\end{array}\right)
$$

and in this case the $\lambda_{i}>0$. Use this fact to determine the general solution for $\mathbf{x}(t)$. [You need not explicitly compute P or the λ_{i}.]

